Modbus-RTU communication protocol

Serial port: 8 data bits, 1 stop bit, no parity effect Baud rate: 96,000,19200 RTU mode When the controller is set to communicate in RTU (Remote Terminal Unit) mode over the Modbus network, each 8Bit byte in the message contains two 4Bit hexadecimal characters. The main advantage of this method is that it can transmit more data than ASCII method at the same baud rate. System of code □ 8-bit binary, hexadecimal 0...9, A...F □Each 8-bit field in the message is a two-hexadecimal character The bits of each byte \Box 1 starting bit \Box 8 data bits, the smallest significant bit sent first \Box 1 parity bit, none if no parity check \Box 1 stop Bit (with check), 2 bits (without check) Error detection domain □ CRC(Cyclic Verbose Detection)

RTU frame

With RTU mode, the message is sent with a pause interval of at least 3.5 characters. This is easiest to achieve with a variety of character times at the network baud rate (as shown in T1-T2-T3-T4 below). The first domain transmitted is the device address. The transmission character that can be used is hexadecimal 0...9, A...F. Network devices constantly detect the network bus, including during pause intervals. When the first domain (address domain) receives a message, each device decodes it to determine whether it is sent to its own. After the last transmission character, a pause of at least 3.5 characters marks the end of the message. A new message can start after this pause.

The entire message frame must be transmitted as one continuous stream. If there is a pause time of more than 1.5 characters before the frame completes, the receiving device will refresh the incomplete message and assume that the next byte is the address field of a new message. Similarly, if a new message starts with the previous message in less than 3.5 characters, the receiving device will consider it a continuation of the previous message. This will result in an error because the value in the CRC field at the end cannot be correct. A typical message frame looks like this:

Position of origin	Device address	Function code	data	CRC verification	End of character
T1-T2-T3-T4	8Bit	8Bit	N 8Bit	16Bit	T1-T2-T3-T4

RTU message frame

Modbus communication protocol is a master-slave protocol. Only one device can transmit on the line at any one time. The master manages the information exchange and only it can initiate it. It polls the slave stations successively, otherwise none of the slave stations can send messages. There is no direct communication between slave stations.

I. Overview of MODBUS-RTU protocol registers

Symbo	N	the 10 (hexadecimal) function	on code is used to	or Write >LC register		
۶C	Name Fi	The coefficient of	Date format floa	address(decimal)		
۶-۲	F-r	measrangevalue	tfloat	315		
շո-Ե	in-b	(zero;	tfloat	337		
ົດປະບ	mv	Sensor sensitivity	tfloat	39		
_in-d	in-d	Displays the decimal	tfloat	7 41		
O		_{Vé} position _{le}	float	9		
SEro	SZro	Power-on automatic	_L floa _{ry}	43		
Parame	eter 1 (R	ead/w ^{reset} selection funct	on code is use	d for read and the 10		
Enor	Zror	(hexad ^{Zero set range} ;tion d				
Stito	tr	Digital filtering	floa	47		
Unice	Name unit	Cc int unit	Date format floa	49		
SEG	Std	CcDegree of stabilitysls	floa	51		
80	Qµ₽1	th Zero tracking range of	floa	53		
		The alarm set value is	floa			
o8	oA1	Tselected by password 1	floa	55		
0065	OUT2	controls controlnparison		15		
		value of the output				
	Au	Compare the target	floa			
Rυ		value of the control		17		
		output				
٥8	oA	password	floa	19		
o	AL - 1	The first comparison	floa	24		
ALo I	ALo1	controls how the output is compared		21		
			floa			
86.05	ALo2	The second comparison controls how the output	1108	23		
neoe	ALUZ	is compared		25		
		The first compares the	floa			
XY8 (HYA1	sensitivity of the control		25		
		output				
		The second compares	floa			
8868	HYA2	the sensitivity of the		27		
		control output				
888	лцц	Peak value judgment	floa	20		
	AHH	threshold		29		
		Threshold for	floa			
811	ALL	determining the valley		31		
		value				

899	Add	Instrument communication address	floa	57
ხჩიძ	bAud	Communication rate selection	floa	59
JoeS	Jocs	Retain	floa	61
εεσ	ctd	Retain	floa	63

Example 1. Read GROSS Gross, such as 1000 (4-byte floating point)

		Host Request(hexadecimal)													
address	Function	code	Start high	Start low	Number of registers in the high bit	Number registers the low b	in CRC verification								
01	03		00	02	00	02	65CB								
			Slave a	inswering(hexa	(decimal)										
	Б. (¹	NL 1		alue 1000 (4	-byte floating	point)	CDC								
address	Function code	Number of bytes	Middle	Low mantissa	Number step code	High mantissa	CRC verification								
01	03	04	00	00	44	7A	48D0								

Example 2. Read all parameter values

	Host Request(hexadecimal)												
address Function code				Start high Start low registers in		Number of registers in the low bit	CRC verification						
01			03	00	00	00	40	443A					
	Slave answering(hexadecimal)												
address	Functions code		Number of bytes	The measured value	王市隆 Total value 4	参数数值 Net worth	n the value	CRC verification					
01	03		80	4byte Floating Point value	4byte Floating Point value	4byte Floating Point value	4byte Floating Point value	xxxx					

Example 3. Write out1. Compare theratio of the control outputto1.Write 1000 (32-bit floatingpoint).

	Host Request(hexadecimal)											
address	Function	Start	Start	Number	Number	Number	Write 1000 (4-byte	CRC				

	code	high	low	of	of	of bytes	floatir	floating point			verific
		address	address	register s in the high bit	register s in the low bit		In the mant issa	Low manti ssa	Number of operat ors expone nt	High mant issa	ation
01	10	00	ос	00	02	04	00	00	44	7A	4119
				Slave answ	wering(hexa	decimal)					
addre ss	Function code	Start I addro	-	Start low address	registe	Number of registers in the high bit		Number of registers in th low bit			CRC
01	10	00		0C		00		02		81	СВ

Example 4. Read system status value (four bytes)

	Host Request(hexadecimal)												
address	s F	Function code		Start high Start lo address addres			Number of registers in the high bit		in Number of		CRC verification		
01		03		00	0A		00		C)2	E409		
	Slave answering(hexadecimal)												
address	address Function code		Numbe r of bytes	Firs byte	The second byte		The t byte	hird The fo byte			CRC verification		
01		03		04	XX	XX		XX		K retair		хххх	
					Firs	t byte							
seven	six	five	four	three		two			one			zero	
				МОТ		ZERO			OUT1			OUT2	
				When the	status bit i	s 1, th	e indicato	r is on					
					The sec	ond b	yte						
seven	six	five	four	three		two			one			zero	
retain	reta	reta	retain	retain	r	etair	1		Х			x	

	in	in									
		GRO	SS value i	0	0						
		NET	Net indic	0	1						
		P	PEAK indic	cator is on	L	1	0				
		VALL	EY indica	tor light i	s on	1	1				
					The third byte						
seven	six	five	four	three	two	one	zero				
retain	reta in	reta in	retain	retain	retain	х	Х				
		KN tho	usand catt	le indicat	or light	0	0				
		G g	ram indic	0	1						
		Kį	g The indi	1	0						
		T t	ton indica	1	1						